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AN ANALYSIS OF THE TRANSITION OF A BELICOPTER FROM 

HOVERING TO STEADY AUTOROTATIVE VERTICAL DESCENT 

By A. A .  Nikolsky and Edward Seckel 

An analytical  study is presented of the t ransi t ion from hovering 
fliat (power on) t o  steady ver t ica l  descent ( i n  autorotation) following 
power f a i lu re  while hovering. 
moment of iner t ia ,  and of rapidi ty  of pitch reduction a f t e r  power fa i lure  
are investigated 

The ef fec ts  of hinging the blades, of blade 

- ..-* 

The r e su l t s  indicate tha t  the effect  of blade flapping is  negligible 
a s  f a r  ac3 the establishment of steady autorotation is concerned. From 
the standpoint of avoiding excessive blade s t a l l i ng  during the transit ion,  
it is  desirable tha t  the blade pitch be reduced as rapidly as  possible 
a f t e r  power fa i lure ,  and tha t  the blade moment of i ne r t i a  be large,  

Sample calculations and graphs of computed t ransi t ions fo r  a typical 
helicopter are  presented. 

INTRODUCTION 

This report  is  the second phase of a broad program of study of the 
transient motions of helicopters in autorotative f l i g h t .  
phase (reference 1) dealt  with the steady-state condition of autorotative 
ver t ica l  descent. 
steady condition of hovering t o  the steady autorotative descent. 

The f i r s t '  

This report  i s  concerned with the t ransi t ion from the 

It has long been realized that  the a b i l i t y  of a helicopter t o  
es tabl ish steady autorotation following power fa i lure  would be an 
important safety feature. Although some helicopters have successfully 
demonstrated such an ab i l i ty ,  there has been no analytical  method avail- 
able f o r  aaaessing the influence of the design vasiables on the ease and 
safety of performing such a maneuver. 

Such a method, based on nurnerical integration of the equations of 
motion, i s  presented in t h i s  report. 
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Validity of the analysis presented here is limited to cases where 
blade stalling can be neglected throughout the maneuver, and therefore 
where the rotor is in no danger of stopping. Nevertheless the investi- 
gation is sufficient to indicate the effects of certain imgortant 
variables. 

This work was conducted at Princeton University under the sponsor- 
ship and with the financial assistance of the National Advisory Conmitt@ 
for Aeronautics 

SYMBOLS 

Physical Quantities 

W 

b 

R 

r 

C 

ce 

e 

gross weight of helicopter, pounds 

number of blades per rotor 

blade radius, feet 

radial distance to blade element, feet 

blade-section chord, feet 

equivalent blade chord, feet 

r2 dr 

rotor solidity ratio (2) 
blade-section pitch angle from zero lift, 

radians unless otherwise stated 

mass moment of inertia of blade about flapping 
hinge, slug-f ee t2 

mss density of air, slugs per cubic foot 

time, seconds 

acceleration of gravity (32.2 ft/sec*) 
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Velocities 

v 

R 

v 

h 

CdO 

f C- 
Go 

true airspeed of helicopter along flight p-ath, 
feet per second 

vertical component of V (positive down, as 
in descent 

rotor angular velocity, radians per second 

induced velocity at rotor (always positive), 
feet per second 

inflow ratio (assuming v constant over the 

disk) 
RR 

Blade-Element Aerodynamic Characteristics 

section profile-drag coefficient 

cd, corrected for friction torque, auxiliary 
mechanisms, and so forth 

coefficients in power series for 
function of angle of attack 

o r  

increment in cd to account for 
0 

torque, and so forth 

cdo as a 

friction 

- Eo) 

a slope of lift curve, per radian 
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T 

Q 

cQ 

P 

k 

Rotor Aerodynamic Characteristics 

rotor thrust, pounds 

rotor torque, pound-feet 

torque coefficient 

Rotor-Blade Motion 

flapping angle, radians unless otherwise noted 

Mi s c ellane ous 

decay constant in assumed variation of 
induced velocity with time 

a13 a* 7 %, A* constants in expression for 8 as a function 
of time; A1 and in radians unless 
otherwise noted 

coefficients in differential equation 
for p(t) 

B1,B2,B3tB4tB5 jB6 jB7 coefficients in complete solution for p ( t ) ,  
radians unless otherwise noted 

mpa,., decay constants in expression for p ( t )  

Subscripts : 

0 initial value, for hovering 

f 

a 

At 

final value, for steady autorotative vertical 
descent 

average value (( fa = )o + ( lf]) 

value after time interval of At seconds 
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P;NAT;YSIS 

5 

It i s  assumed tha t  the in i t i a l  steady s t a t e  of hovering f l i g h t  i s  
en t i re ly  determined, and the physical quantit ies of t h i s  hovering 
condition are denoted by the subscript 0.  In ' t he  f i n a l  s t a t e  of 
steady autorotative descent, the subscript f i s  used t o  denote the 
physical quantit ies.  

The simultaneous d i f fe ren t ia l  equations governing the t rans i t ion  

(1) For the ver t ica l  acceleration of the craf t ,  with the rotor  
, 

period are s ix  in number: 

thrust a function of R, V, v, P ,  6, 8, and s o  for th .  
I 

(2) For the anmar acceleration of the rotor, with the rotor  

(3) For the flapping motion of the blades. 

torque a function of 0, V, v, and so for th .  

(4) For the  hunting motion of the blades. 

( 5 )  For the lnduced velocity v as a function of T, V, ?, and 
so for th  (unsteady flow) 

(6) For the angle of incidence 8 as a function of the flapping 
and l a g  angles. 

There is  as yet neither theory nor empirical data on which t o  base 
the f i f t h  of the above equations. 
the induced velocity v 

For convenience, it is assumed that 
varies w i t h  time a f t e r  power failure according t o  

-kt v = vf + (vo - v,)e 

where the value of the decay coefficient 
assigned different values in order t o  investigate i t s  importance. 
may be anticipated that  the e f fec t  of the approximation represented by 
equation (1) is  s m a l l ,  and that the. value of k chosen i s  not c r i t i ca l ,  
when the ini t ia l  and final values of induced velocity are  not widely 
different,  as in  the usual case. The induced velocity is considered t o  
be constant over the rotor  disk. While exponential variation of 
induced velocity (equation (1)) represents a convenient assumption, it 
is  not unlikely that  the actual vasiation would be somewhat different.  
Verification of the supposition tha t  the effect  i s  small ,  .must, failing 
a theoretical  approach, a w a i t  experbnental evidence 

k is  arbi t rary and may be 
It 
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It i s  assumed tha t  the angle of incidence var ies  with tim 
exponentially, and according t o  

6 = Bf + Ale-% t + %e -w 

where j$., %, &1, and a2 are arbi t rary,  except t ha t  

The changes in incidence due t o  flapping o r  hunting axe thus 
combined with whatever changes the p i l o t  may make manually. 
choosing the constants, %, %, &1, and 

t ions  a f t e r  power failure may be investigated. 
solving the fourth, f i f t h ,  and s ix th  of the basic equations i s  obviated, 
by the assumptions represented by equations (1) and (2),  and the problem 
simplified enormously. 

By sultably 
5, rapid or  slow pi tch reduc- 

Thus, the necessiky of 

It may fur ther  be anticipated tha t  the  var ia t ion of $ with t i m e  
w i l l  be of minor importance bokh t o  the designer and in i t s  ef fec t  on 
the variations of V and R with time. For the analysis of flapping 
angle it is  therefore assumed that,  in the t ransient  period, R 
constant and has the value of the  average between Ro and O f .  This 

average value i s  denoted by 

is  a 

Ra. 

In the following analysis only untwisted and untapered blades axe 

chord 
considered. 
applied t o  any blades, with fa i r  accuracy, by using equivalent 
and angle of incidence. 

The equations developed on this basis  c p  probablyllbe 

Solution f o r  .p 

The equation f o r  the ve r t i ca l  acceleration of the helicopter may 
then be written as 

pbacR 3 2  Ra 

V = g -  2- W (* - 3na 3 
63 

(3) 
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and the equation for the transient flapping motion is 

Solving equation (4) for V, differentiatlng for Q, and 
substituting in equation (3) gives 

where 

pacR R, 2 pabcR - (R + 
$2 - 6% a 4 w g  

pabcR 2 3  Qa 

b3 = 4w/g 

The transient solution of equation (5) is of the form 

at 
mlt + e (B* cos cut + B sin cot B = Ble 3. 
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where the roots of 

m3+blm 2 + b m + b  = O  
2 3 

a re  

m = m l  m = a f  1 

NACA TN 1907 

where 

The steady-state solutions have the same form as the forcing 
functions, and together must sa t i s fy  equation (5) .  
state solutions are: 

Thus the steady- 

-kt - a1t -a2t % 

+ B e  P = B 4  + B  5 e +B6e 7 

where, by substi tution Into equation (5) and equating coefficients of 
identic81 terms, 

34  = P, (88) 
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The in i t ia l  conditions, which must be sa t i s f ied  by the complete 
solution for P ( t ) ,  are that ,  a t  t = 0, 

P = Ps ( 9 )  

, 
P = P o = 9  

Therefore, from equations ( 9 ) ,  

B 1  + B2 + B4 + Bg + 36 + B7 = Po 

- m5 - 5 B 6  a B = 0 3 2 7  "11 B + o B 2 + &  

Equations (lo), (loa), and (10%) can be solved f o r  B1, B2, 
and B3, when B4 
complete solution, then, i s  

through B7 have been found by equations (8) . The 

P ( t )  = Bleml' + eat(B2 cos c u t  + B 3 sin ut  

-kt -alt -a2 t 
B4 + B e + Bge + B7e 5 
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Solution f o r  51 and V 

The remaining two variables are  V ( t )  and S2(t) .  The equations t o  
be solved are  the thrus t  and torque equations: 

and 

5 =  pcR4Q2 [T x2fl - $(f3 - flf2) - f2f3 + 4 '0'1 + 2PPQ I1 

211 

where 

f l = a -  62 

and p ( t )  is known approximately from equation (11). 

Equations (12) and (13) can be solved by a tabular, step-by-step 
process as outlined below. 

A sample calculation has been perfomed ( f i g .  l), by the  step-by- 
s tep process, comparing the r e s u l t s  obtained by including and neglecting 
the p terms i n  equations (J2) aQd (13) . Reference t o  the figure w i l l  
show tha t  the e f fec t  of flapping is  negligible on the variations of ~ ( t )  
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and V( t)  e 

development of the step-by-step method of solving equations (12) 
and (13).  
the  e f fec ts  of blade flapping would be negligible. 

The flapping terms are therefore neglected i n  the following 

Ln effect ,  then, only r i g i d  blades are considered, although 

Equations (12) and (13) then become 

and 

By different ia t ing equation (13a), 

2 B(a - 2s2) ?jo1 + E1e + E2e 
n(v - v)  - ai - + 2es$ 3R 2 
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At zero time (the instant of power failure) all the quantities in 
the above equations (12a), (13a), and (14) axe known. 
process is started by computing from these the values of Vo, ho, 
and 6 After a short interval of time, say At seconds, the new value 

0 
of rotor a n g u l a r  velocity R may be found approximately fromthe 

abbreviated Taylor series : 

The-step-by-step 

At 

2 
RAt =. Ro + (At)b, + -@$$60 

It is assumed that the change in V in the period At is the 
time At times the average rate of change of V in the time 
interval At. Thus, 

From equation (12a), 

Solving equations (16) and (17) simultaneously for ?' (the wiknowns 

being vat and vat), 
At 

. At n 

1 + At 

whence VAt may be found from equation (16). 
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Now hAt may be computed from equation (13a) and the approximate 
value o f  qt from equation (15) checked by 

If t h i s  does not check quite closely the value first obtained from 
equation (15), and wed in equation (18), a trial-and-error process can 
be used t o  find OAt In t h i s  case, a value of would be assumed, 

in  place of equation (l5), used in  equation (18), and then checked 
by equation (19). Good agreement should be achieved before the process 
i s  repeated f o r  the next intervalo 
f o r  At = I, 

2 
usually checked quite closely (within 0 -05 radian/sec) by equation (19) . 

Experience has shown tha t  

second, the first estimate furnished by equation (15) is 

This process i s  repeated f o r  as many intervals of time as axe 
necessary f o r  R and V t o  reach their  f i n a l  steady values in steady 
autorotation 

A running check can be kept on the approach t o  the in s t ab i l i t y  
caused by excessive blade s t a l l i n g  (see reference 1) by computing the 
value of the inflow r a t i o  X a t  every interval  of t i m e ,  and spotting X 
and 8 on curves of Q against X and 8 ,  i n  which the e f fec t  of 
blade stall has been included, as in figure 3 of reference 1. The value 
of X is 'given by 

j V  - v) 
RR 

Long before the "second, unstable tr im point" (described i n  
reference 1) is  approached, however, it would be necessary t o  use 
modified equations (12a) and (l3a), altered t o  include the e f fec ts  of 
blade s t&lingo In t h i s  case, the t r i c k  represented by equation (15) 
t o  improve the convergence of the step-by-step process would be exces- 
sively complex t o  apply. 
carry out the numerical integration of the new equations (12a) and (13a) 
would be arduous at  each interval of tlme, and, f o r  adequate accuracy, 

The trial-and-error process necessary t o  

he time intervals would have t o  be much more frequent. 
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A SAMpI;E DESIGN STUDm 

Using the methods described in the preceding section, the tran- 
s i t ions  from hovering t o  steady autorotation have been computed fo r  a 
helicopter with the following physical characterist ics:  

w = 2700 pounds 

b = 3  

c = 1.25 f e e t  

a = 5.6 per radian/ 

R = 20 f e e t  = 0.0087 - 0.0216% + 0.400%~ 

I~ = 100, 200, 400 slug-feet2 

This sample desi@ i s  the same as w a s  considered i n  reference 1, f o r  
which the steady autorotative character is t ics  were computed. 

The i n i t i a l  hovering state considered is 

Vo = 0 

Q~ = 25.1 radians per second 

vo = 21.25 f ee t  per second 

Go = 7.25O = 4.1263 radian 

For t ransi t ions in which the pitch i s  reduced after power failure,  
the final s t a t e  considered i s  

Vf = 31.2 f ee t  per second 

af = 20.8 radians per second 

vc = 25.1 f e e t  per second 

ef = 4' = 0.0698 radian 

I 

For t ransi t ions in which the pitch i s  not reduced, the f inal  steady 
state is  taken as 

Vf = 30.5 f e e t  per second vf = 26.4 feet per second 

m, = 16.5 radians per second Bf = 7.25O = 0 ~ 2 6 5  radian 
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The various ways in  which the pi tch is  changed, f o r  t h i s  invest i -  
gation, are i l l u s t r a t ed  in  figure 2. The different  curves correspond 
t o  different  values of the constants %, %, %, and a2 (equation ( 2 ) ) 0  

The variations of induced velocity with t i m e ,  given by equation ( l ) ,  
are i l l u s t r a t ed  in  figure 3, f o r  k = 1, and, i n  the cases of pi tch 
reduction after power failure, f o r  k = OD.  

RESULTS MID DISCUSSION 

Probable Effect of Assuming the Variation of 

Induced Velocity with Time 

A typical  variation of descending velocity V and rotor  angular 
velocity R 
These calculations were made by the step-by-step process given in  the 
section en t i t l ed  "Solution f o r  R and V," neglecting flapping. Two 
calculations were made, f o r  k = 1.0 and m, in  order t o  evaluate the 
importance of k. 

with time a f t e r  power f a i lu re  is  i l l u s t r a t ed  in  figure 4. 

Since, i n  the usual case, the initial and final values fo r  the 
induced velocity are not very different,  it seems in tu i t ive ly  evident 
t h a t  the exact variation of ought not t o  a f f ec t  the variations 
of V( t)  and R( t) appreciably. This i s  confirmed by f igure 4, 
where V( t )  and a( t) are compared f o r  the widely d i f fe ren t  values 
of k, representing the var ia t ions .of v( t) ehom in figure 3. 

v ( t )  

It may be observed that,  i f  the induced velocity varied in  such a 
manner tha t  i t s  value w a s  not  always between the i n i t i a l  and f i n a l  
values, then it might be important t o  consider the actual variation. 
In tha t  case, v ( t )  It 
should be remarked that,  in the solution f o r  Q( t) and V( t) j u s t  
referred to, any suitable var ia t ion of 
exponential var ia t ion w a s  convenient in the  analytical  solution 
fo r  p ( t ) .  

would have t o  be determined from experiment. 

v ( t )  may be assumed, The 

Interpretat ion of the Different Rates of Pitch 

Change Considered 

The extremes of the types of pi tch change considered are the upper- 

The case 
most and lowermoet curves of figure 2, representing no pi tch change and 
instantaneous pftch reduction a t  the instant of power failure. 
of no pi tch change could occur with r i g i d  blades (or hinged blades so 
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ar t iculated t h a t  a change in l a g  angle would not change the incidence) 
i f  the p i l o t  f a i l ed  t o  alter the pitch manually. 
pitch change could be approached by a rotor  having ar t iculated blades 
with no damping about the drag hinge. In t h i s  case, the change in l a g  
angle would be very rapid, and any attendant change of incidence could 
be considered pract ical ly  instantaneous. The intermediate, exponential 
types of pitch change could each occur, f o r  ar t iculated blades, with an 
i n f in i t e  number of combinations of p i l o t  reactibn and degrees of damping 
about the drag hinge. 
slower p i l o t  reaction and greater damping about the drag hinge. 
r i g id  blades, the cwrves represent only different  p i l o t  reactions. 

The instantanecus 

The more gradual changes are associated with 
For 

Variations of Flapping Angle p with Time After 

Power Failure 

The influence of the different  r a t e s  of pitch change, and of blade 
moment of iner t ia ,  on the variation of flapping angle p with time is  
given in  figure 5 .  
equation (ll), using the induced-velocity decay coefficient k equal 

These calculations were made by the method of 

t o  unity. 

The variations of p ( t )  shown in  figure 5 are of passing interest  
only, since the e f fec ts  of blade flapping are of no importance in the 
variations of V ( t )  and R ( t )  . In sp i te  of the l inear iz ing assumption 
in  the solution f o r  p ( t )  tha t  R is constant, f igure 5 probably 
gives a good indication of stop-settings required on the flapping hinge 
t o  allow the blades complete freedom in t h i s  maneuver. 
of P are  different  fo r  the case of no pitch change and the cases of 
pitch reduction because the f i n a l  values of R are not the sane. 

The f i n a l  values 

Effect of Blade Flapping on V ( t )  and a t )  
Comparison ( f ig .  1) of two computations of V ( t )  . and n ( t ) ,  f o r  

instantaneous pitch change, shows tha t  the e f fec t  of blade flapping i s  
negligible. 
comparison, since the variations of P are  greatest  f o r  t h i s  
case ( f ig .  5 ) .  
in  p causes a change in incidence, then i n  equation (2 )  f o r  e ( t )  
the influence of flapping must be considered. The value of k w a s  
taken t o  be unity. 

The case of instantaneous pitch change w a s  chosen f o r  t h i s  

If the flapping hinge i s  so directed tha t  a change 
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Influence of R a t e  of Pitch Reduction and Blade 

17 

Moment of Inertia on V(t) and Q(t) 

The influence of rate of pitch change and blade moment of i ne r t i a  
on the var ia t ion of flapping angle w i t h  t i m e  is shown in  figure 5;  the 
effect  of blade moment of inertia on V(t) and qt)  is shown in  
figure 6. 
effect  the t rans i t ion  f o r  the cases considered is  about 6 seconds. 
With regard t o  avoiding the in s t ab i l i t y  caused by blade s t a l l i ng  a t  
high values of X 
reference l), it is  desirable t o  keep X 
maneuver. 

It may be considered tha t  the average time required t o  

(see the  study of s t a b i l i t y  of autorotation, 
t o  a minimum throughout the 

In order t o  evaluate the  e f fec ts  of rate of pitch reduction and 
moment of inertia in  t h i s  regard, figures 7 and 8 are presented. 
sol id  l i n e s  represent boundaries detemdned from reference 1, figure 3. 
For any value of 

value of X at which the difference in 9 due t o  neglecting blade 

stalling was 0.0015. 
of 8, an a rb i t ra ry  limit f o r  X, above which blade s ta l l ing  should be 
accounted f o r  in  equations (12a) and (l3a).  The broken curves are  the 
l o c i  of combinations of X and 0 computed during the maneuvers 
considered in the study of the sample design. As can be seen from the 
figures, all the cases computed l i e  within the range of X and 8 
where blade s t a l l i n g  can be neglected, as has been done i n  the ANpJ;ysIS. 

The 

8, the point on the boundary was  determined by the 
2c 

Thus the boundaries shown indicate, f o r  any value 

From f igure 7, the advantage of a rapid pitch reduction i s  appment, 
f o r  keeping X t o  a m i n i m u m  throughout the maneuver, and hence in  
avoiding the in s t ab i l i t y  of excessive blade s ta l l ing .  
similarr  advantage f o r  large blade moment of i n e r t i a  i s  t o  be noted. 

Fron figure 8, a 

For la rger  i n i t i a l  blade angles in  hovering than considered here, 
the maneuver can only be investigated by accounting f o r  blade s ta l l ing,  
and then only with grave reservations because of the assumption of 
constant vduced velocity, which assumption w a s  shown i n  reference 1 
t o  be severe in cases where blade s t a l l i ng  is  important. 
be anticipated that, in t h i s  case, the importance of rapid r a t e  of pitch 
reduction and large blade moment of i n e r t i a  would be greatly mgnif ied.  

It can, however, 

Descending Velocity against Altitude Lost 

Figures 9 and 10 show descending velocity against a l t i tude  l o s t  
during the maneuvers invegtigated. 
graphical integration of the curves of 

Altitude l o s t  i s  obtained by 
V(t) ,  figures 5 and 6.  The 
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average drop required t o  e f fec t  the transit ion,  fo r  the cases considered, 
i s  seen t o  be about 120 f e e t .  

The effect  of rate of pi tch change on descending velocity a t  a 
given munt of a l t i tude  los t ,  from figure 9, i s  apparently small. This 
conclusion is obviously ltmited t o  cases where the hovering incidence is 
within the range f o r  steady autorotation. If eo were greater than the 
maximum f o r  steady autorotation (reference 1, fJgo  3), then obviously 
the pitch would have t o  be reduced rapidly t o  avoid the in s t ab i l i t y  
caused by excessive blade s ta l l ing .  

From figure 10, the advantage of a large blade moment of iner t ia ,  in 
preserving a minimum descending velocity f o r  a given a l t i tude  los t ,  i s  
readily apparent. 

CONCLUSIONS 

Analytical methods are given f o r  t rea t ing  the transient motion of 
a helicopter between the hovering s t a t e  and the steady autorotative 
s t a t e  of ver t ica l  descent. From the standpoint of avoiding blade 
s t a l l i n g  in the transit ion,  it is  desirable t o  reduce pitch rapidly and 
t o  have a large blade moment of inertia. 

The e f fec ts  of hinging the blades, f o r  a given ne t  r a t e  of pitch 
reduction after power fai lure ,  appear t o  be negligible. 

The average time t o  e f fec t  the t ransi t ion from hovering t o  steady 
autorotation is  about 6 seconds, f o r  the cases investigated. 
corresponding average a l t i tude  l o s t  in  the t ransi t ion i s  about 120 feet. 

The 

Princeton University 
Princeton, N e  J., May 12, 1948 
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Figure 1.- Effect of rate of pitch reduction on the variations of descending 
velocity and rotor angular velocity with time after power failure. Flapping 
neglected except as noted. I1 = 200 slug-feet 2 . 
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Figure 2.- Types of pitch change considered. 
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Figure 3.- Assumed variations of induced velocity with time after power 
failure. 
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Figure 4.- Effect of two different assumptions f o r  induced velocity against 
time on the variations of descending velocity and rotor angular velocity 

with time after power failure. v = vf + (vo - vf)e -kt . (See fig. 3.) 
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Figure 5.- Effects of rate of pitch reduction and blade moment of inertia 
on the variation of flapping angle with time after power failure. 
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Figure 6.- Effect of blade moment of inertia on the variations of descending 
velocity and rotor angular velocity with time after power failure. Slow 
exponential pitch change (fig. 2). 
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Figure 8.- Effect of blade moment of inertia on A against e throughout the 
transition maneuver. Slow exponential pitch change. 
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Figure 9.- Effect of rate of pitch reduction on descending velocity against 
altitude lost. I1 = 200 slug-feet2. 
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Figure 10. - Effect of blade moment of inertia on descending velocity against 
altitude lost. Slow exponential pitch change. 


